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Parametric correlations of the energy levels of ray-splitting billiards
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Parameter-dependent statistical properties of the spectra of ray-splitting billiards are studied experimentally
and theoretically. The autocorrelation functiar(x) andc(w,x) of level velocities as well as the generalized
conductanceC(0) are calculated for two different classically chaotic ray-splitting billiards. Experimentally a
modified Sinai ray-splitting billiard is studied consisting of a thin microwave rectangular cavity with two
quarter-circle-shaped Teflon inserts. The length of the cavity serves as the experimentally adjustable parameter.
For the theoretical estimates of the parametric correlations we compute the quantum spectrum of a scaling
triangular ray-splitting billiard. Our experimental and numerical results are compared with each other and with
the predictions of random matrix theory.
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A wide class of quantum chaotic systems depends on awhere
external parameteX, where X may, for instance, represent c
the_strength of an external field or the shape of the (_:onflnlng Nav(E):f pay(E'AE’ @)
perimeter of the quantum system. Upon the rescaling,of
the correlation functions of thX-dependent energy levels
are expected to be univerddl-5]. Of all possible correla-
tion functions, the velocity autocorrelation function takes
center stage. It has been studied theoretically in great deta
in cases wher& is a magnetic field1—7] or whereX char- X
acterizes the shape of a quantum billi§89]. The velocity X=J VC(0)dX, (©)
autocorrelation function has also been calculated for random %i
matrix dynamics[10—13. Given the enormous theoretical \yhere[X;,X] is the interval of integration,
interest in the velocity autocorrelation function, it is surpris-
ing that experiments addressing its measurement are scarce. C(0)= i 2 (@
We are aware of only four experimental investigations study- N IX
ing the velocity autocorrelation function fgr) a conven-
tional Sinai billiard[14], (ii) the Sinai quartz blockl5], (i)  is the generalized conductance, adds the number of en-
a vibrating platg16], and(iv) a ray-splitting microwave bil- ~ergy levels under consideration.
liard [9]. The autocorrelation functions of the level velocitigx)
In order to evaluate the autocorrelation function of level[1,2,17 and¢c(w,x) [3] are defined as follows:
velocities one should eliminate system-dependent features of 5 5
the spectra and, instead of the original energy lewgls c(x)=< %(x)%(x+x)> 5)

is the integrated average level dengity,(E). The paramet-
ric motion of the levels has to be unfolded too. This is
chieved by introducing the dimensionless parameter

2

4

i

consider the unfolded energies

Si:Nav(Ei)v (1) and

— — dej __dej —
Ei,j 5[8i(x)_8j(x+x)_w]ﬁ_Y(Y)a_Y(X+X)

(6)

C(w,X)=

Zi,j <5[8i(;)_8j(7+x)_w]>

In Eq. (5) the average is over the paramexeand over all  velocities separated by a distancén parameter space and
levels. In Eq.(6) the average is only over the parametein by a distancew in energy.

contrast toc(x), which correlates velocities belonging to the  In this paper, we study the velocity autocorrelation func-
same levelc(w,x) measures the averaged autocorrelation otions for two different ray-splitting systemigl8—23: the
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FIG. 2. Unfolded spectrum of the modified Sinai billiard for the
eigenenergies;, i =225-255.

measured using a frequency step of 0.2 MHz, which we have
found to be satisfactory for revealing all the details of the
spectra. The eigenfrequencies with counting ingldarger
than 356 ¢>10.4 GHz) were not measured. Although
— rather short antenndéength 2.5 mmwere used to allow for
only a small perturbation of the cavity’s field, its quality
factor Q was rather low Q~10® for »>10 GHz) and there-
fore the resolution of the resonances measured in this region
FIG. 1. Sketch of the modified Sinai microwave cavity. The was poor. The measured resonance frequencies are converted
width of the cavity isw=20 cm and the lengthis varied experi- to “eigenergies” of the two-dimensional microwave billiard
mentally betweenl;=43.02 cm andl;=40.52 cm. Two quarter- according to the formuld28] Ej(l)=kj2(l), where k;(1)

w |
!

circle Teflon disks of radius;=7 cm andr,=10 cm, respectively, = 2mvj(l)/c are the wave numbers. A typical set of unfolded
are inserted in the microwave cavity. The height of the inserts is th%nergy levels of the modified Sinai microwave Cavity, as a
same as the height of the cavit9.8 cm. function of I, is shown in Fig. 2. The expression for the

integrated average density of levdig,, (E) for the MSB
modified Sinai billiard(MSB) and the triangular step billiard required for the unfolding, was obtained from form{@a22
(TSB) [22]. Ray-splitting systems are a new class of chaotidn Ref. [26]. Figure 2 shows that the level dynamics are
systems in which the underlying classical mechanics is nonirregular.
Newtonian and nondeterministi20,22,24. Ray splitting The ray-splitting triangular step billiaf@2] considered in
occurs in many fields of physics, whenever the wavelength ighis paper, is shown in Fig. 3. It is an isosceles triangle with
large in comparison with the range over which the potentiaR top angle of &/20. The bisector of the top angle is a
changes. Ideal model systems for the investigation of rayray-splitting boundary dividing the triangle into two equal
splitting phenomena are ray-splitting billiar@$8,20,22,23  parts with two different potential§/=0 andV=V,>0. Itis
and microwave cavities with dielectric insef819,25,26. proved analytically that there are no elliptic islands in the

The modified Sinai microwave cavity consists of a thin classical phase space of the TER]. There is also numeri-
cavity of dimensionsh=0.8 cm (height and w=20 cm cal evidence that the TSB is ergodi22]. The stationary
(width) with two quarter-circle Teflon inserts of radiug
=7 cm andr,=10 cm, respectivelysee Fig. 1L For fre-
guencies less than a cut-off frequenay,=c/(2hn), where
c is the speed of light and is the index of refraction of the
dielectric insert, the electrodynamics of a thin microwave
cavity can be described by the Helmholtz equafi@n. It is
equivalent to the Schdinger equation in a two-dimensional
quantum billiard[28—-30. For a Teflon-loaded microwave
cavity the index of refraction is=1.44[31] and the cut-off
frequency isv.=13 GHz.

The length of the microwave cavity was chosen as an
experimentally adjustable parameter to generate level dy-
namics. We have changed the lenftf the microwave cav-
ity in the range froml;=43.02 cm tol;=40.52 cm in 50
steps of 0.05 cm, and measured resonance frequengjes FIG. 3. The isosceles triangular step billiard. The ray-splitting
j=10, ...,356 as dunction of the parametdrfor the fre-  boundaryR separates the two domains of the billiard witk-0 and
quency range from 2 to 10.4 GHz. The cavity’s spectra wera/=V,>0. The angle isx=61/20.
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n FIG. 5. Nearest-neighbor spacing distribution for the MSB for
level numberdN=225-356. The NNS distribution was fitted to the
Brody formula(see the textwith a Brody parameter ofj=1.03
+0.05. The inset shows the parametric velocity distribution for the
MSB compared to a Gaussid( &) = (1/y2m)exp(=&/2).

FIG. 4. Unfolded spectrum of the triangular step billiard for the
eigenenergies;, i=200-230. The scaling parameteris defined
as 7=V, /E (Ref.[22)).

Schralinger equation for the TSB was solved numerically to
obtain 400 eigenenergies. The level dynamics was revealed (/2)se (™¥<, which describes quantum chaotic systems
by solving the Schrdinger equation for 73 different values [29]. Thus the parameterin the Brody formula can be used
of the scaling parametey=V,/E (Fig. 4). The spectra of as a convenient measure of the degree of chaoticity.
the TSB were unfolded by means of the integrated average For the first 165 levels of the MSB we find=0.72
density of leveldN,,(7) taken from Ref[22]. +0.05. The NNS distribution for higher levelsj (
The main point of this paper is to study the universality =225, ... 356) of the MSB is shown in Fig. 5. In this case
conjecture by investigating parameter-dependent correlatiowe find a Brody parameter af=1.03+0.05, and the NNS
functions for systems that depend on different control paramdistribution is very close to the Wignerian distribution. The
eters in substantially different ways. In the MSB the externainset in Fig. 5 shows the distribution of parametric velocities
parameteiX is the length of the cavity while in the TSB the constructed from the energy levels with counting index
parameterX represents the potential scaling parameger =225 ...,356 compared with the theoretically expected
which, in an electromagnetic context, would be equivalent tadistribution. We obtain very good agreement between theory
the variation of the dielectric constant while preserving theand experiment. We mention that for the first 165 levels of
shape and size of the cavity and the dielectric. From an exhe MSB the distribution of velocitie$not shown has a
perimental point of view, a significant variation of the dielec- pronounced non-Gaussian character.
tric constant inside a microwave cavity would pose a very In the case of the triangular step billiard, both the NNS
difficult problem. distributions for the lower levelg=1, .. .,100(not shown
Before performing any calculations of the autocorrelationand the higher levelg=150, . . .,400(see Fig. 6 are well
functions of level velocities one should estimate how manydescribed by Wignerian distributions. We obtaingd 0.97
of the low-lying levels may possibly display nonuniversal +0.04 for the levels§=1, ...,100 andj=0.98+0.04 for
behavior. Two different measures were used for this purposghe levelsj =150, . . . ,400, respectively. However, the dis-
the nearest-neighbor spaci(igNS) distribution and the dis-  tribution of parametric velocities for the lower levejs
tribution of parametric velocitiege/dx. For time-reversal =1 . . 100 isnon-Gaussian. The distribution of velocities
invariant classically chaotic systems, which correspond to
the Gaussian orthogonal ensembB&OE) in random matrix

theory (RMT) (the case considered hgréhe NNS distribu- 10

tion should resemble a Wigner distributi¢g9], while the 0.8
distribution of parametric velocities should be Gaus$&d].
For the first 165 levels, careful analysis of the NNS dis- 06}

tributions for the Sinai billiard reveals a significant deviation 5? 4
of these distributions from the Wigner surmise. The NNS 0.4}
distributions were fitted to the Brody formul&3] 0

Py(S)=bgs%e % with 00 ,

0 1 2 3 4
2+q\ ] s
bq=(1+q)aq, ag= F(]_T) (7) ) ) o
a FIG. 6. Nearest-neighbor spacing distribution for the TSB for

level numberdN=150-400. The NNS distribution was fitted to the
Forg=0, the Brody formula becomes the Poissonian distri-Brody formula(see the tejtwith a Brody parameter ofj=0.98
bution Py(s)=e" %, which describes integrable systems; for +0.04. The inset shows the parametric velocity distribution for the
gq=1 it assumes the form of a Wignerian distributiBp(s)  TSB compared to a Gaussi®{¢) = (1/y2m)exp(&2).
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FIG. 7. Velocity autocorrelation functioa(x) for the modified
Sinai billiard (circles and the triangular step billiarétriangles
compared to the predictions of RMTull line).

& w,x)

for levelsj=150,. . .,400 ispresented in the inset of Fig. 6. . . . ,
This distribution is very close to a Gaussian. Taking into 00 02 04 06 08 1.0
account NNS and parametric velocity distributions, we de- X

cided to use level numbers 225,.,356 of the MSB and
level numbers 150 .. ,400 of the TSB in thealculations of
velocity autocorrelation functions discussed below.

In Fig. 7 we show the parametric velocity autocorrelation
function c(x) for the modified Sinai billiard and for the tri-
angular step billiard compared to the predictions of RMT for
GOE [34]. The numerical simulations of the parameter-
dependent correlation functions within RMT were made with
the help of the following mod€]8]:

FIG. 8. Velocity autocorrelation function(w,x) for the modi-
fied Sinai billiard[panel(a)] and the triangular step billiarkhbanel
(b)] compared to the predictions of RMTull lines) for the three
values of the parametes: w=0.25 (circles, «=0.5 (triangles,
andw=1 (diamonds.

tions are compared to the RMT results obtained from the
model Hamiltonian(8). For the modified Sinai billiard, the
overall agreement with the RMT predictions is rather good
H(X)=H, sin(X)+H, cog X), (8) but, especially foro=0.25 andx=0.11, the experimental
peak exceeds the RMT result. For the TSB, we find good
whereH, ,H, are two 500 500 matrices that are members agreement with RMT predictions. For smallthe data lie
of the GOE. In our calculations, the paramelewas esti- somewhat lower than predicted by the theoretical curve.
mated in 1001 points uniformly distributed in the interval With increasingx they reach peak values that exceed the
(0,77/8). Foreach value of the paramet¥rwe ran 99 real- RMT prediction. The data for the TSB also decay slightly
izations ofH; andH,. The eigenvalues obtained from the faster than the corresponding RMT prediction.
diagonalization of the Hamiltoniahl (X) were unfolded by For two-dimensional billiards in the semiclassical regime,
using the integrated average eigenvalue density that was dée system-dependent generalized conductaD(@) was
rived via Eq.(2) from the average density of the eigenvaluesfound to scale with energy according@0)~ %2 [8,9,32.
of GOE matrice§34]. This property was tested for both the TSB and the MSB
For the Sinai ray-splitting billiard, a good overall agree- billiards (Fig. 9. Each point on the curves in Fig. 9 was
ment with the results predicted by RMT is observed. Forobtained by averaging over 10 neighboring levels for the
small values of the parameter(x<0.2) the experimental TSB (Fig. 9 and over 20 neighboring levels for the MSB
data shows a small downward deviation from the RMT re-
sults. For larger values of it follows the theory well, until
the minimum on the curve is reached. For still largethe
experimental curve diverges from the theoretical prediction
in the upward direction. The autocorrelation function for the
TSB agrees with the theory for small values of the parameter
but for intermediate values of (0.4<x<1.2) it deviates
significantly in the downward direction. This deviation has
been previously observed for other chaotic systgtsé For
x>1.5 the autocorrelation functiar(x) shows deviations in
the upward direction. %0 200 300 200
For a more thorough examination of the two systems’ €
parametric correlations, we computed the velocity autocorre- , )
lation functionsc(w,x). Figure 8 shows the velocity auto- .. -FIG' S Gener_ahzc_ed conductan€(0) for the tnanbgulqr step
b ’ billiard. The full line is the least-squares fiE(0)=ae”, with a
correlator c(w,x) for w=0.25, 0.5, and 1.0 for the MSB =0.685+0.201 andb=1.50+0.05. The inset show€(0) for the
[panel(a)] and the TSB[panel(b)]. In our calculations we modified Sinai billiard. The full line is the least-squares @¢0)
averaged over an energy intervdd=0.03[3]. The calcula- =aeP, with a=19.9 m2+13.2 i 2 andb=1.39+0.13.
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(inset in Fig. 9. In both cases the data were also averagednodified Sinai billiard and the triangular step billiard. For
over the full range of the paramet&: For these data, a the MSB we found good agreement of the estimatéx)
least-squares fit to the function with the RMT prediction. However, the autocorrelation func-

C(0)=as" 9) tions ¢(w,x) exceed the RMT results, though they are still
within the experimental error. For the TSB, the correlation

was performed with the two fit parameteraindb. From the  function c(x) deviates significantly in the downward direc-
fit for the TSB, we obtained the parameter valiaes0.685 tion for intermediate values of (0.4<x<1.2). Since this
+0.201 ando=1.50*0.05, respectively. Thus the exponent deviation has been observed previously for other chaotic sys-
b is in excellent agreement with the theory. The inset of Figtems[9,15] our results add substance to the suspicion that
9 shows that for the MSBC(0) exhibits strong oscillations not all statistical properties of classically chaotic systems
possibly connected with the presence of bouncing ball orbitgnay be accurately described by RMT. In contrast(v), the
[35]. Due to this oscillatory behavior, we decided to eXtendautocorrelation functions(w,x) calculated for the TSB, are

the range of fitting to the lower energies corresponding 9 good agreement with the RMT predictions. In both cases,

N=75-356. For the modified Sinai billiard, we obtainad . ;
~19.9 m2+13.2 m 2 andb=1.39+0.13. The parameter however, the scaling of the universal cogguctaﬁtt@) was

b coincides with the expected value 3/2 within the errorClose to the theoretical predictiad(0)~ ™"
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