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Parametric correlations of the energy levels of ray-splitting billiards
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Parameter-dependent statistical properties of the spectra of ray-splitting billiards are studied experimentally

and theoretically. The autocorrelation functionsc(x) and c̃(v,x) of level velocities as well as the generalized
conductanceC(0) are calculated for two different classically chaotic ray-splitting billiards. Experimentally a
modified Sinai ray-splitting billiard is studied consisting of a thin microwave rectangular cavity with two
quarter-circle-shaped Teflon inserts. The length of the cavity serves as the experimentally adjustable parameter.
For the theoretical estimates of the parametric correlations we compute the quantum spectrum of a scaling
triangular ray-splitting billiard. Our experimental and numerical results are compared with each other and with
the predictions of random matrix theory.
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A wide class of quantum chaotic systems depends on
external parameterX, whereX may, for instance, represen
the strength of an external field or the shape of the confin
perimeter of the quantum system. Upon the rescaling oX,
the correlation functions of theX-dependent energy level
are expected to be universal@1–5#. Of all possible correla-
tion functions, the velocity autocorrelation function tak
center stage. It has been studied theoretically in great d
in cases whereX is a magnetic field@1–7# or whereX char-
acterizes the shape of a quantum billiard@8,9#. The velocity
autocorrelation function has also been calculated for rand
matrix dynamics@10–13#. Given the enormous theoretica
interest in the velocity autocorrelation function, it is surpr
ing that experiments addressing its measurement are sc
We are aware of only four experimental investigations stu
ing the velocity autocorrelation function for~i! a conven-
tional Sinai billiard@14#, ~ii ! the Sinai quartz block@15#, ~iii !
a vibrating plate@16#, and~iv! a ray-splitting microwave bil-
liard @9#.

In order to evaluate the autocorrelation function of lev
velocities one should eliminate system-dependent feature
the spectra and, instead of the original energy levelsEi ,
consider the unfolded energies

« i5Nav~Ei !, ~1!
e
o
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where

Nav~E!5EE

rav~E8!dE8 ~2!

is the integrated average level densityrav(E). The paramet-
ric motion of the levels has to be unfolded too. This
achieved by introducing the dimensionless parameter

x5E
Xi

X
AC~0!dX, ~3!

where@Xi ,X# is the interval of integration,

C~0!5
1

N (
j

S ]« j

]X D 2

~4!

is the generalized conductance, andN is the number of en-
ergy levels under consideration.

The autocorrelation functions of the level velocitiesc(x)
@1,2,17# and c̃(v,x) @3# are defined as follows:

c~x!5K ]« j

] x̄
~ x̄!

]« j

] x̄
~ x̄1x!L ~5!

and
c̃~v,x!5

( i , j K d@« i~ x̄!2« j~ x̄1x!2v#
]« i

] x̄
~ x̄!

]« j

] x̄
~ x̄1x!L

( i , j ^d@« i~ x̄!2« j~ x̄1x!2v#&

. ~6!
d

c-
In Eq. ~5! the average is over the parameterx̄ and over all
levels. In Eq.~6! the average is only over the parameterx̄. In
contrast toc(x), which correlates velocities belonging to th
same level,c̄(v,x) measures the averaged autocorrelation
 f

velocities separated by a distancex in parameter space an
by a distancev in energy.

In this paper, we study the velocity autocorrelation fun
tions for two different ray-splitting systems@18–23#: the
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SAVYTSKYY, KOHLER, BAUCH, BLÜMEL, AND SIRKO PHYSICAL REVIEW E64 036211
modified Sinai billiard~MSB! and the triangular step billiard
~TSB! @22#. Ray-splitting systems are a new class of chao
systems in which the underlying classical mechanics is n
Newtonian and nondeterministic@20,22,24#. Ray splitting
occurs in many fields of physics, whenever the wavelengt
large in comparison with the range over which the poten
changes. Ideal model systems for the investigation of r
splitting phenomena are ray-splitting billiards@18,20,22,23#
and microwave cavities with dielectric inserts@9,19,25,26#.

The modified Sinai microwave cavity consists of a th
cavity of dimensionsh50.8 cm ~height! and w520 cm
~width! with two quarter-circle Teflon inserts of radiusr 1
57 cm andr 2510 cm, respectively~see Fig. 1!. For fre-
quenciesn less than a cut-off frequencync5c/(2hn), where
c is the speed of light andn is the index of refraction of the
dielectric insert, the electrodynamics of a thin microwa
cavity can be described by the Helmholtz equation@27#. It is
equivalent to the Schro¨dinger equation in a two-dimensiona
quantum billiard@28–30#. For a Teflon-loaded microwav
cavity the index of refraction isn.1.44 @31# and the cut-off
frequency isnc.13 GHz.

The length of the microwave cavity was chosen as
experimentally adjustable parameter to generate level
namics. We have changed the lengthl of the microwave cav-
ity in the range froml i543.02 cm tol f540.52 cm in 50
steps of 0.05 cm, and measured resonance frequencien j ,
j 510, . . . ,356 as afunction of the parameterl for the fre-
quency range from 2 to 10.4 GHz. The cavity’s spectra w

FIG. 1. Sketch of the modified Sinai microwave cavity. T
width of the cavity isw520 cm and the lengthl is varied experi-
mentally betweenl i543.02 cm andl f540.52 cm. Two quarter-
circle Teflon disks of radiusr 157 cm andr 2510 cm, respectively,
are inserted in the microwave cavity. The height of the inserts is
same as the height of the cavity~0.8 cm!.
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measured using a frequency step of 0.2 MHz, which we h
found to be satisfactory for revealing all the details of t
spectra. The eigenfrequencies with counting indexj larger
than 356 (n.10.4 GHz) were not measured. Althoug
rather short antennae~length 2.5 mm! were used to allow for
only a small perturbation of the cavity’s field, its qualit
factorQ was rather low (Q'103 for n.10 GHz) and there-
fore the resolution of the resonances measured in this re
was poor. The measured resonance frequencies are conv
to ‘‘eigenergies’’ of the two-dimensional microwave billiar
according to the formula@28# Ej ( l )5kj

2( l ), where kj ( l )
52pn j ( l )/c are the wave numbers. A typical set of unfolde
energy levels of the modified Sinai microwave cavity, as
function of l, is shown in Fig. 2. The expression for th
integrated average density of levelsNav(E) for the MSB
required for the unfolding, was obtained from formula~2.22!
in Ref. @26#. Figure 2 shows that the level dynamics a
irregular.

The ray-splitting triangular step billiard@22# considered in
this paper, is shown in Fig. 3. It is an isosceles triangle w
a top angle of 6p/20. The bisector of the top angle is
ray-splitting boundary dividing the triangle into two equ
parts with two different potentials,V50 andV5V0.0. It is
proved analytically that there are no elliptic islands in t
classical phase space of the TSB@22#. There is also numeri-
cal evidence that the TSB is ergodic@22#. The stationary

e

FIG. 2. Unfolded spectrum of the modified Sinai billiard for th
eigenenergies« i , i 5225–255.

FIG. 3. The isosceles triangular step billiard. The ray-splitti
boundaryR separates the two domains of the billiard withV50 and
V5V0.0. The angle isa56p/20.
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PARAMETRIC CORRELATIONS OF THE ENERGY . . . PHYSICAL REVIEW E64 036211
Schrödinger equation for the TSB was solved numerically
obtain 400 eigenenergies. The level dynamics was reve
by solving the Schro¨dinger equation for 73 different value
of the scaling parameterh5V0 /E ~Fig. 4!. The spectra of
the TSB were unfolded by means of the integrated aver
density of levelsNav(h) taken from Ref.@22#.

The main point of this paper is to study the universal
conjecture by investigating parameter-dependent correla
functions for systems that depend on different control para
eters in substantially different ways. In the MSB the exter
parameterX is the length of the cavity while in the TSB th
parameterX represents the potential scaling parameterh
which, in an electromagnetic context, would be equivalen
the variation of the dielectric constant while preserving
shape and size of the cavity and the dielectric. From an
perimental point of view, a significant variation of the diele
tric constant inside a microwave cavity would pose a v
difficult problem.

Before performing any calculations of the autocorrelat
functions of level velocities one should estimate how ma
of the low-lying levels may possibly display nonunivers
behavior. Two different measures were used for this purpo
the nearest-neighbor spacing~NNS! distribution and the dis-
tribution of parametric velocities]«/]x. For time-reversal
invariant classically chaotic systems, which correspond
the Gaussian orthogonal ensemble~GOE! in random matrix
theory ~RMT! ~the case considered here!, the NNS distribu-
tion should resemble a Wigner distribution@29#, while the
distribution of parametric velocities should be Gaussian@32#.

For the first 165 levels, careful analysis of the NNS d
tributions for the Sinai billiard reveals a significant deviati
of these distributions from the Wigner surmise. The NN
distributions were fitted to the Brody formula@33#

Pq~s!5bqsqe2aqs11q
with

bq5~11q!aq , aq5FGS 21q

11qD G11q

. ~7!

For q50, the Brody formula becomes the Poissonian dis
bution P0(s)5e2s, which describes integrable systems; f
q51 it assumes the form of a Wignerian distributionP1(s)

FIG. 4. Unfolded spectrum of the triangular step billiard for t
eigenenergies« i , i 5200–230. The scaling parameterh is defined
ash5V0 /E ~Ref. @22#!.
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, which describes quantum chaotic system

@29#. Thus the parameterq in the Brody formula can be use
as a convenient measure of the degree of chaoticity.

For the first 165 levels of the MSB we findq50.72
60.05. The NNS distribution for higher levels (j
5225, . . . ,356) of the MSB is shown in Fig. 5. In this cas
we find a Brody parameter ofq51.0360.05, and the NNS
distribution is very close to the Wignerian distribution. Th
inset in Fig. 5 shows the distribution of parametric velociti
constructed from the energy levels with counting indexj
5225, . . . ,356 compared with the theoretically expecte
distribution. We obtain very good agreement between the
and experiment. We mention that for the first 165 levels
the MSB the distribution of velocities~not shown! has a
pronounced non-Gaussian character.

In the case of the triangular step billiard, both the NN
distributions for the lower levelsj 51, . . . ,100~not shown!
and the higher levelsj 5150, . . . ,400~see Fig. 6! are well
described by Wignerian distributions. We obtainedq50.97
60.04 for the levelsj 51, . . . ,100 andq50.9860.04 for
the levels j 5150, . . . ,400, respectively. However, the dis
tribution of parametric velocities for the lower levelsj
51, . . . ,100 isnon-Gaussian. The distribution of velocitie

FIG. 5. Nearest-neighbor spacing distribution for the MSB
level numbersN5225–356. The NNS distribution was fitted to th
Brody formula ~see the text! with a Brody parameter ofq51.03
60.05. The inset shows the parametric velocity distribution for
MSB compared to a GaussianP(j)5(1/A2p)exp(2j2/2).

FIG. 6. Nearest-neighbor spacing distribution for the TSB
level numbersN5150–400. The NNS distribution was fitted to th
Brody formula ~see the text! with a Brody parameter ofq50.98
60.04. The inset shows the parametric velocity distribution for
TSB compared to a GaussianP(j)5(1/A2p)exp(2j2/2).
1-3
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for levels j 5150, . . . ,400 ispresented in the inset of Fig. 6
This distribution is very close to a Gaussian. Taking in
account NNS and parametric velocity distributions, we d
cided to use level numbers 225,. . . ,356 of the MSB and
level numbers 150, . . . ,400 of the TSB in thecalculations of
velocity autocorrelation functions discussed below.

In Fig. 7 we show the parametric velocity autocorrelati
function c(x) for the modified Sinai billiard and for the tri
angular step billiard compared to the predictions of RMT
GOE @34#. The numerical simulations of the paramete
dependent correlation functions within RMT were made w
the help of the following model@8#:

H~X!5H1 sin~X!1H2 cos~X!, ~8!

whereH1 ,H2 are two 5003500 matrices that are membe
of the GOE. In our calculations, the parameterX was esti-
mated in 1001 points uniformly distributed in the interv
(0,p/8). For each value of the parameterX we ran 99 real-
izations ofH1 and H2. The eigenvalues obtained from th
diagonalization of the HamiltonianH(X) were unfolded by
using the integrated average eigenvalue density that was
rived via Eq.~2! from the average density of the eigenvalu
of GOE matrices@34#.

For the Sinai ray-splitting billiard, a good overall agre
ment with the results predicted by RMT is observed. F
small values of the parameterx (x,0.2) the experimenta
data shows a small downward deviation from the RMT
sults. For larger values ofx it follows the theory well, until
the minimum on the curve is reached. For still largerx, the
experimental curve diverges from the theoretical predict
in the upward direction. The autocorrelation function for t
TSB agrees with the theory for small values of the param
but for intermediate values ofx (0.4,x,1.2) it deviates
significantly in the downward direction. This deviation h
been previously observed for other chaotic systems@15#. For
x.1.5 the autocorrelation functionc(x) shows deviations in
the upward direction.

For a more thorough examination of the two system
parametric correlations, we computed the velocity autoco
lation functionsc̃(v,x). Figure 8 shows the velocity auto
correlator c̃(v,x) for v50.25, 0.5, and 1.0 for the MSB
@panel ~a!# and the TSB@panel ~b!#. In our calculations we
averaged over an energy intervald50.03 @3#. The calcula-

FIG. 7. Velocity autocorrelation functionc(x) for the modified
Sinai billiard ~circles! and the triangular step billiard~triangles!
compared to the predictions of RMT~full line!.
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tions are compared to the RMT results obtained from
model Hamiltonian~8!. For the modified Sinai billiard, the
overall agreement with the RMT predictions is rather go
but, especially forv50.25 andx.0.11, the experimenta
peak exceeds the RMT result. For the TSB, we find go
agreement with RMT predictions. For smallx the data lie
somewhat lower than predicted by the theoretical cur
With increasingx they reach peak values that exceed t
RMT prediction. The data for the TSB also decay sligh
faster than the corresponding RMT prediction.

For two-dimensional billiards in the semiclassical regim
the system-dependent generalized conductanceC(0) was
found to scale with energy according toC(0);«3/2 @8,9,32#.
This property was tested for both the TSB and the M
billiards ~Fig. 9!. Each point on the curves in Fig. 9 wa
obtained by averaging over 10 neighboring levels for
TSB ~Fig. 9! and over 20 neighboring levels for the MS

FIG. 8. Velocity autocorrelation functionc̃(v,x) for the modi-
fied Sinai billiard@panel~a!# and the triangular step billiard@panel
~b!# compared to the predictions of RMT~full lines! for the three
values of the parameterv: v50.25 ~circles!, v50.5 ~triangles!,
andv51 ~diamonds!.

FIG. 9. Generalized conductanceC(0) for the triangular step
billiard. The full line is the least-squares fit:C(0)5a«b, with a
50.68560.201 andb51.5060.05. The inset showsC(0) for the
modified Sinai billiard. The full line is the least-squares fit:C(0)
5a«b, with a519.9 m22613.2 m22 andb51.3960.13.
1-4
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~inset in Fig. 9!. In both cases the data were also averag
over the full range of the parameterX. For these data, a
least-squares fit to the function

C~0!5a«b ~9!

was performed with the two fit parametersa andb. From the
fit for the TSB, we obtained the parameter valuesa50.685
60.201 andb51.5060.05, respectively. Thus the expone
b is in excellent agreement with the theory. The inset of F
9 shows that for the MSB,C(0) exhibits strong oscillations
possibly connected with the presence of bouncing ball or
@35#. Due to this oscillatory behavior, we decided to exte
the range of fitting to the lower energies corresponding
N575–356. For the modified Sinai billiard, we obtaineda
519.9 m22613.2 m22 and b51.3960.13. The paramete
b coincides with the expected value 3/2 within the er
limits.

In summary, we presented a detailed experimental
theoretical study of the velocity autocorrelation functio
c(x) and c̃(v,x) for two different ray-splitting systems: th
s
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modified Sinai billiard and the triangular step billiard. F
the MSB we found good agreement of the estimatedc(x)
with the RMT prediction. However, the autocorrelation fun

tions c̃(v,x) exceed the RMT results, though they are s
within the experimental error. For the TSB, the correlati
function c(x) deviates significantly in the downward direc
tion for intermediate values ofx (0.4,x,1.2). Since this
deviation has been observed previously for other chaotic
tems @9,15# our results add substance to the suspicion t
not all statistical properties of classically chaotic syste
may be accurately described by RMT. In contrast toc(x), the

autocorrelation functionsc̃(v,x) calculated for the TSB, are
in good agreement with the RMT predictions. In both cas
however, the scaling of the universal conductanceC(0) was
close to the theoretical predictionC(0);«3/2.
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